

Ecology and Impacts of Infectious Diseases on California Hummingbirds

Lisa Tell DVM, Dipl. ABVP-Avian, Dipl. ACZM* Holly Ernest DVM, PhD

School of Veterinary Medicine, University of CA, Davis Department of Veterinary Sciences, University of Wyoming

Avian Communities: Disease Ecology and Population Health

- **▶** Disease prevalence = indicator of <u>population health</u>
 - What is "normal" for a avian populations?
- ▶ Key parameter for <u>population viability</u> assessment
 - Which (how, when, why) disease agents change vital rates (survivorship and reproduction)?
- Evaluation of <u>ecological impacts</u>
 - "What if" scenarios Which environmental actions will likely cause an effect to rates of disease in populations?
- Assist with conservation planning efforts
 - For populations at risk of decline, what actions can reduce diseaserelated losses in survivorship and reproduction?

Avian Vector Borne Diseases

Vector Borne Disease Research

- Model system for host-parasite interactions
- Relevant to fields of ecology, evolution and conservation biology
- Hemosporidian Parasitism
- Viral Infections
 - West Nile Virus
 - Pox Virus

Avian Communities:

Disease Ecology and Population Health WHY HUMMINGBIRDS?

- Provide critical ecosystem services by contributing to the overall ecological health of their habitats
- Serve as sentinel species that can provide indications of overall environmental health

HUMMINGBIRDS (Family Trochilidae)

- Despite their importance, little is known: disease ecology
- Several species threatened, endangered, or "of special concern"

California Hummingbird Species

Hummingbirds: Specialized Research

Photo courtesy of Shannon Skalos

- 1. Tiny!!!
- 2. Species ID
- 3. Specialized handling and sampling requirements
- 4. Assay methods need to be developed for sensitivity/small sample volumes

Avian Vector Borne Dz: Haemoparasitism

Source: http://wildpro.twycrosszoo.org/S/00Ref/bookref36_fieldmanualofwildlifediseases/24/B36Fig24-1.gif

The complex general life cycle of hemosporidian parasites begins with (A), an infected insect biting a susceptible bird. Separate infectious and developmental stages occur in (B), the bird host, and (C), the insect vectors.

Haemoparasitism Vectors Blood-Sucking Dipteran Insects

Biting Midges
(Ceratopogonidae)
Louse Flies
(Hippoboscidae)

Haemoproteus spp.

Mosquitoes (Culicidae)

Plasmodium spp.

Blackflies (Simuliidae)

Leucocytozoon spp.

Hummingbirds: Haemoparasitism

Very little known about hummingbird hemoparasites!

Described blood parasites (literature)

- Plasmodium relictum
- P. cathermerium
- P. rouxi

Found in several bird families

- Haemoproteus archilochus
- H. trochili
- H. witti

Found only in hummingbirds

Recent publication describing Leucocytozoon

Haemoparasite Research Study

- Identify the prevalence of Haemosporidian blood pathogens found in CA hummingbirds *Plasmodium*, *Haemoproteus*, and *Leucocytozoon*
- Distinguish potential novel strains of hemoparasites in hummingbirds
- Generate a phylogenetic tree to elucidate the evolutionary relationship of the identified hemoparasites

Study Lead: Sarah Bahan, Veterinary Student
University of CA, Davis
Collaborator: Dr. Ravinder Seghal
San Francisco State University

Hummingbird Haemoparasite Research

- January 2012-August 2013
- Northern CA Banding Sites (n=3)
- Hummingbirds (n=300)
 - *C. anna* 68% and *A. alexandri* 32%
- Sample Collection: Toenail clip
- Blood Smear
 - Coverslip Technique
 - Staining Method: Wright-Giemsa
 - Microscopic Assessment
- Blood Sample
 - Molecular Testing (PCR)
 - Previously described method (Seghal)

Hummingbird Haemoparasite Research: Preliminary Results

- •4.2% of total individuals screened by PCR tested positive for *Haemoproteus* or *Plasmodium*
- Haemoproteus: identified in 17.7% of the blood smears, as well as a *Trypanasome* in a single bird

Haemoproteus infected erythrocyte (Black-chinned adult hummingbird; under oil at 1000x)

Hummingbird Haemoparasite Research: Preliminary Results

- Black-chinned hummingbirds: significantly higher prevalence of hemoparasitism than Anna's (pvalue = 1.32 E -06)
- Adults (after-hatch year): significantly higher prevalence of hemoparasitism than juveniles (hatch year) (p-value = 0.003)
- Neither sex nor geographical location had a significant effect on prevalence of hemoparasitism

Haemoproteus infected erythrocyte (Black-chinned adult hummingbird; under oil at 1000x)

Vector Borne Avian Viral Infections: West Nile Virus

- Flavivirus –an **ArBo**virus
 - Blood sucking insect transmission
- First discovered 1937 Uganda; reported
 Western hemisphere (NY State) in 1999
- Mosquito vector: birds as reservoir hosts
- Many species of birds can become infected
- Severe weakness and depression, ataxia, circling, and convulsions
- Detection: rising ab titers, histopathology, virus isolation, DNA probes

Hummingbirds: West Nile Virus

- California Department of Public Health Surveillance
- Hummingbird deaths reported
- Carcass submission and PCR testing

Hummingbirds: West Nile Virus

- Future Efforts
 - Compare to other closely related species (swifts)
 - Compare to susceptible avian species
 - Evaluate resident versus migrating populations
 - Evaluate for geographic differences
 - Evaluate impacts of global warming

Yellow-billed Magpie

Very high % of WNV-positive tested dead birds in California

Photo: Tom Greer

Vector Borne Avian Viral Infections: Avian Pox

- Pox viruses exist in numerous avian orders
- Examples: canary, poultry, pigeon, falcon
- Susceptibility: varies widely among birds
- Forms: Dry (cutaneous) or diphtheritic (wet)
- Transmission- Insects and traumatic induced lesions; break in epithelium necessary for infection

Hummingbirds: Avian Pox

Journal of Wildlife Diseases
October 2013, Volume 49, Issue 4, pp. 978-985

Characterization of avian poxvirus in Anna's hummingbird (*Calypte anna*) in California, USA

Godoy LA, Dalbeck LS, Tell LA, Woods LW, Colwell RR, Robinson B, Wethington SM, Moresco A, Woolcok PR, Ernest HB

- Avian Pox Virus
 - n=5 birds; 9 lesions
- Histopathology and PCR Dx

Photo courtesy R. Colwell

Hummingbirds: Avian Pox

Field Implications

- Needs portal of entry
- Fomites?

Future Assessment

- Vector for hummingbird dz
- Prevalence of disease
- Geographic distribution
- How climate change might impact disease prevalence
- Limited food sources/feeder availability

Concluding Remarks

- Unique biology and ecosystem services
- Genetics and disease studies focusing on conservation efforts
- Develop novel approaches for disease monitoring
- The future is exciting!

